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1. Introduction
It is possible to determine a function F (x) from its derivative f(x) by
calculating the anti-derivative or integral of f(x), i.e.,

if
dF

dx
= f(x) ; then F (x) =

Z
f(x)dx+ C

where C is an integration constant (see the package on inde�nite
integration). In this package we will see how to use integration to
calculate the area under a curve.
As a revision exercise, try this quiz on inde�nite integration.

Quiz Select the inde�nite integral of
R
(3x2 � 1

2x)dx with respect to x

(a) 6x� 1

2
+ C ; (b)

3

2
x3 � x2 + C ;

(c) x2 +
1

4
x2 + C ; (d) x3 � 1

4
x2 + C :

Hint: If n 6= �1 ; the integral of xn is xn+1=(n+ 1).
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2. De�nite Integration
We de�ne the de�nite integral of the function f(x) with respect to
x from a to b to be

Z b

a

f(x)dx = F (x)

����
b

a

= F (b)� F (a) ;

where F (x) is the anti-derivative of f(x). We call a and b the lower
and upper limits of integration respectively. The function being inte-
grated, f(x), is called the integrand. Note the minus sign!

Note integration constants are not written in de�nite integrals since
they always cancel in them:Z b

a

f(x)dx = F (x)

����
b

a

= (F (b) + C)� (F (a) + C)

= F (b) + C � F (a)� C

= F (b)� F (a) :
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Example 1 Calculate the de�nite integral
R 2

1
x3dx.

From the rule
R
axndx =

a

n+ 1
xn+1 we have

Z 2

1

x3dx =
1

3 + 1
x3+1

����
2

1

=
1

4
x4
����
2

1

=
1

4
� 24 � 1

4
� 11

=
1

4
� 16� 1

4
= 4� 1

4
=

15

4
:

Exercise 1. Calculate the following de�nite integrals: (click on the
green letters for the solutions)

(a)
R 3

0
xdx ; (b)

R 2

�1
xdx ;

(c)
R 2

1
(x2 � x)dx ; (d)

R 2

�1
(x2 � x)dx :
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3. The Area Under a Curve
The de�nite integral of a function f(x) which lies above the x axis
can be interpreted as the area under the curve of f(x).
Thus the area shaded blue below

0
x

y

a b

y = f(x)

A

is given by the de�nite integralZ b

a

f(x)dx = F (x)

����
b

a

= F (b)� F (a) :

This is demonstrated on the next page.
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Consider the area, A, under the curve, y = f(x). If we increase
the value of x by �x, then the increase in area, �A, is approximately

�A = y �x ) �A

�x
= y :

Here we approximate the
area of the thin strip by
a rectangle of width �x
and height y. In the limit
as the strips become thin,
�x! 0, this means:

x x+�x

y

x

y

0

A �A

dA

dx
= lim

�x!0

�A

�x
= y :

The function (height of the curve) is the derivative of the area and
the area below the curve is an anti-derivative or integral of
the function.
N.B. so far we have assumed that y = f(x) lies above the x axis.
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Example 2 Consider the integral
R 3

0
xdx. The integrand y = x (a

straight line) is sketched below. The area underneath the line is the
blue shaded triangle. The area of any triangle is half its base times
the height. For the blue shaded triangle, this is

A =
1

2
� 3� 3 =

9

2
:

0
x

y

3

3

y = x

A

As expected, the integral yields the same result:Z 3

0

xdx =
x2

2

����
3

0

=
32

2
� 02

2
=

9

2
� 0 =

9

2
:
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Here is a quiz on this relation between de�nite integrals and the area
under a curve.

Quiz Select the value of the de�nite integralZ 3

1

2dx ;

which is sketched in the following diagram:

0
x

y

1 3

2

y = 2

A

(a) 6 ; (b) 2 ; (c) 4 ; (d) 8 :

Hint: 2 may be written as 2x0, since x0 = 1.
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Example 3 Consider the two lines: y = 3 and y = �3.
Let us integrate these functions in
turn from x = 0 to x = 2.
a) For y = 3:Z 2

0

(+3)dx = 3x

����
2

0

= 3�2�3�0 = 6 :

and 6 is indeed the area of the rect-
angle of height 3 and length 2.

b) However, for y = �3:Z 2

0

(�3)dx = �3x
����
2

0

= �3�2�(�3�0) = �6 :

6

-
x

y

0

�3�

3�

1
j

2
j

y = +3

y = �3

Although both rectangles have the same area, the sign of this result
is negative because the curve, y = �3, lies below the x axis. This
indicates the sign convention:

If a function lies below the x axis, its integral is negative.
If a function lies above the x axis, its integral is positive.
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Exercise 2.

6

-
x

y

0A B C D

y1(x)

y2(x)

From the diagram above, what can you say about the signs of the
following de�nite integrals? (Click on the green letters for the solu-
tions)

(a)
R B
A
y1(x)dx ; (b)

RD
B
y1(x)dx ;

(c)
R 0

A
y2(x)dx ; (d)

RD
C
y2(x)dx :
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Example 4 To calculate
R
�2

�4
6x2dx, use

R
axndx =

a

n+ 1
xn+1. Thus

Z
�2

�4

6x2dx =
6

2 + 1
x2+1

����
�2

�4

=
6

3
x3
����
�2

�4

= 2x3
����
�2

�4

= 2� (�2)3 � 2� (�4)3 = �16 + 128 = 112 :

Note that even though the integration range is for negative x (from
�4 to �2), the integrand, f(x) = 6x2, is a positive function. The
de�nite integral of a positive function is positive. (Similarly it is
negative for a negative function.)

Quiz Select the de�nite integral of y = 5x4 with respect to x if the
lower limit of the integral is x = �2 and the upper limit is x = �1

(a) �31 ; (b) 31 ; (c) 29 ; (d) �27 :
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Exercise 3. Use the integrals listed below to calculate the following
de�nite integrals. (Click on the green letters for the solutions)

f(x) xn for n 6= �1 sin(ax) cos(ax) eax
1

x

R
f(x)dx

1

n+ 1
xn+1 �1

a
cos(ax)

1

a
sin(ax)

1

a
eax ln(x)

(a)
R 9

4
3
p
tdt ; (b)

R 1

�1
(x2 � 2x+ 4)dx ;

(c)
R �
0
sin(x)dx ; (d)

R 3

0
4e2xdx ;

(e)
R 2

1

3

t
dt ; (f)

R �

2
�

4

2 cos(4w)dw :
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Quiz Find the correct result for the de�nite integralZ 2b

a

x2dx :

(a)
8

3
b3 � 1

3
a3 ; (b) 4b� 2a ;

(c)
8

3
b3 +

1

3
a3 ; (d)

1

3
b3 � 1

3
a3 :

Quiz Select the correct result for the de�nite integralZ 3

2

1

x2
dx ;

from the answers o�ered below

(a) �1 ; (b)
1

5
; (c)

1

36
; (d)

1

6
:



Section 4: Final Quiz 15

4. Final Quiz
Begin Quiz Choose the solutions from the options given.

1. What is the area under the curve of the following positive function
y = 10x4 + 3x2 between x = �1 and x = 2?
(a) 75 ; (b) 53 ; (c) 69 ; (d) 57 :

2. What is the de�nite integral of 3 sin(2x) from x = 0 to x = �=2 ?

(a) �3 ; (b) 0 ; (c) 3 ; (d)
5

2
:

3. Find the (non-zero) value of b for which the de�nite integralR b
0
(2s� 3)ds vanishes

(a) 1 ; (b) 5 ; (c) 3 ; (d) 2 :

4. Select below the de�nite integral
R 2

�2
e2xdx with respect to x.

(a) 2
�
e4 � e�4

�
; (b) 1

2

�
e4 � 4

p
e
�
; (c) 0 ; (d) 1

2

�
e4 � e�4

�
:

End Quiz



Solutions to Exercises 16

Solutions to Exercises
Exercise 1(a) To calculate

R 3

0
xdx, use the formulaZ

xndx =
1

n+ 1
xn+1

with n = 1. This yieldsZ 3

0

xdx =
1

1 + 1
x1+1

����
3

0

=
1

2
x2
����
3

0

=
1

2
� (3)2 � 1

2
� (0)2

=
1

2
� 9� 0 =

9

2
:

Click on the green square to return
�
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Exercise 1(b) To calculate
R 2

�1
xdx, use the formula for the inde�nite

integral Z
xndx =

1

n+ 1
xn+1

with n = 1. This yields

Z 2

�1

xdx =
1

1 + 1
x1+1

����
2

�1

=
1

2
x2
����
2

�1

=
1

2
� (2)2 � 1

2
� (�1)2

=
1

2
� 4� 1

2
� (+1)

= 2� 1

2
=

3

2
:

Click on the green square to return
�
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Exercise 1(c) To evaluate the de�nite integral
R 2

1
(x2 � x)dx we

rewrite it as the sum of two integrals and use
R
xndx = 1

n+1x
n+1 with

n = 2 in the �rst integral and with n = 1 in the second oneZ 2

1

x2 dx�
Z 2

1

x dx =
1

2 + 1
x2+1

����
2

1

� 1

1 + 1
x1+1

����
2

1

=
1

3
x3
����
2

1

� 1

2
x2
����
2

1

=
1

3
� 23 � 1

3
� 13 �

�
1

2
� 22 � 1

2
� 12

�

=
1

3
� 8� 1

3
� 1�

�
1

2
� 4� 1

2
� 1

�

=
7

3
� 3

2
=

14

6
� 9

6
=

5

6
:

Click on the green square to return �
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Exercise 1(d) To �nd the integral
R 2

�1
(x2 � x)dx we rewrite it as the

sum of two integrals and use the result of the previous part to write
it asZ 2

�1

x2 dx�
Z 2

�1

x dx =
1

3
x3
����
2

�1

� 1

2
x2
����
2

�1

=
1

3
� 23 � 1

3
� (�1)3 �

�
1

2
� 22 � 1

2
� (�1)2

�

=
1

3
� 8 +

1

3
� 1�

�
1

2
� 4� 1

2
� 1

�
=

9

3
� 3

2

= 3� 3

2
=

3

2
:

Click on the green square to return �
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Exercise 2(a)

6

-
x

y

0A B C D

y1(x)

The sign of the de�nite integral,
R B
A
y1(x)dx, must be negative. This

is because the function y1(x) is negative for all values of x between A
and B. The area is all below the x axis.

Click on the green square to return
�
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Exercise 2(b)

6

-
x

y

0A B C D

y1(x)

The sign of the de�nite integral,
RD
B
y1(x)dx, must be positive. This

is because, between the integration limits B and D, there is more area
above the x axis than below the x axis.

Click on the green square to return
�
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Exercise 2(c)

6

-
x

y

0A B C D

y2(x)

The sign of the de�nite integral,
R 0

A
y2(x)dx, must be positive. This

is because, between the integration limits A and 0, there is more area
above the x axis than below it.

Click on the green square to return �
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Exercise 2(d)

6

-
x

y

0A B C D

y2(x)

The sign of the de�nite integral,
RD
C
y2(x)dx, must be negative. This

is because, between the integration limits C and D, the integrand
y2(x) is always negative.

Click on the green square to return �
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Exercise 3(a) To calculate the de�nite integral
R 9

4
3
p
tdt we rewrite

it as Z 9

4

3
p
tdt = 3�

Z 9

4

t1=2dt

and use
R
xndx =

1

n+ 1
xn+1 for n = 1

2

3�
Z 9

4

t
1

2 dt = 3� 1
1
2 + 1

t
1

2
+1

����
9

4

= 3� 1
3
2

� t
3

2

����
9

4

= 3� 2

3
t
3

2

����
9

4

= 2t
3

2

����
9

4

= 2� (9)
3

2 � 2� (4)
3

2 = 2� (9
1

2 )3 � 2� (4
1

2 )3

= 2� (3)3 � 2� (2)3 = 2� 27� 2� 8 = 54� 16 = 38 :

N.B. dividing by a fraction is equivalent to multiplying by its inverse
(see the package on fractions).

Click on the green square to return �



Solutions to Exercises 25

Exercise 3(b) To calculate the de�nite integral
R 1

�1
(x2�2x+4)dx we

rewrite it as a sum of integrals
R 1

�1
x2dx� 2� R 1

�1
xdx+ 4� R 1

�1
1dx

and use
R
xndx =

1

n+ 1
xn+1 with n = 2 in the �rst integral,

Z 1

�1

x2dx =
1

2 + 1
x2+1

����
1

�1

=
1

3
x3
����
1

�1

=
1

3

�
13 � (�1)3� = 2

3
;

with n = 1 in the second integral

2�
Z 1

�1

xdx = 2� 1

1 + 1
x1+1

����
1

�1

= x2
����
1

�1

= � �
12 � (�1)2� = 0 ;

and with n = 0 in the last integral

4�
Z 1

�1

1dx = 4� 1

0 + 1
x0+1

����
1

�1

= 4x

����
1

�1

= 4 (1� (�1)) = 8 :

Summing up these numbers we obtain 2=3 + 0 + 8 = 26=3.

Click on the green square to return �
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Exercise 3(c) To calculate the de�nite integral
R �
0
sin(x)dx we note

from the table that Z
sin(ax)dx = �1

a
cos(x):

This yields (with a = 1)Z �

0

sin(x)dx = � cos(x)

����
�

0

= � (cos(�)� cos(0)) = � ((�1)� 1) = 2 :

N.B. It is worth emphasizing that the angles in calculus formulae for
trigonometric functions are measured in radians.

Click on the green square to return
�
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Exercise 3(d) To calculate the de�nite integral
R 3

0
4e2xdx , writeZ 3

0

4e2xdx = 4�
Z 3

0

e2xdx

and use from the table Z
eaxdx =

1

a
eax:

This gives for a = 2

4�
Z 3

0

e2xdx = 4� 1

2
e2x

����
3

0

= 2e2x
����
3

0

= 2e(2�3) � 2e(2�0)

= 2e6 � 2e0 = 2e6 � 2� 1 = 2e6 � 2 :

Click on the green square to return
�
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Exercise 3(e) To evaluate the de�nite integral
R 2

1

3

t
dt we write

Z 2

1

3

t
dt = 3�

Z 2

1

1

t
dt

and use Z
dt
1

t
= ln(t) :

This yields

3�
Z 2

1

1

t
dt = 3� ln(t)

����
2

1

= 3� ln(2)� 3� ln(1)

= 3� ln(2)� 3� 0

= 3 ln(2) :

N.B. ln(0) = 1 , since e0 = 1 .

Click on the green square to return �
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Exercise 3(f) To �nd the de�nite integral
R �

2
�

4

2 cos(4w)dw use

Z �

2

�

4

2 cos(4w)dw = 2�
Z �

2

�

4

cos(4w)dw :

and
R
cos(ax)dx =

1

a
sin(x) . This gives for a = 4

2�
Z �

2

�

4

cos(4w)dw = 2� 1

4
sin(4w)

����
�

2

�

4

=
1

2
sin(4w)

����
�

2

�

4

=
1

2
sin(4� �

2
)� 1

2
sin(4� �

4
)

=
1

2
sin(2�)� 1

2
sin(�)

=
1

2
� 0� 1

2
� 0 = 0 :

Click on the green square to return �
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Solutions to Quizzes
Solution to Quiz: To �nd the inde�nite integral

R
(3x2 � 1

2x)dx we
use the sum rule for integrals, rewriting it as the sum of two integralsZ

(3x2 � 1

2
x) dx =

Z
3x2 dx+

Z
(�1

2
x) dx

= 3

Z
x2 dx� 1

2

Z
x dx :

Using
R
xndx = 1

n+1x
n+1 ; n 6= �1 with n = 2 in the �rst integral and

with n = 1 in the second one gives

3

Z
x2 dx� 1

2

Z
x dx = 3� 1

1 + 2
x1+2 � 1

2
� 1

1 + 1
x1+1 + C

=
3

3
x3 � 1

2(1 + 1)
x2 + C = x3 � 1

4
x2 + C :

Check that di�erentiation of this result gives 3x2� 1
2x. End Quiz
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Solution to Quiz: Using 2 = 2x0, the integralZ 3

1

2dx = 2

Z 3

1

x0dx = 2x

����
3

1

= 2� 3� 2� 1 = 6� 2

= 4 :

Indeed from the diagram

0
x

y

1 3

2

y = 2

A

the area under the curve between the integration limits is the area of
a square of side 2. This has area 2� 2 = 4. End Quiz
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Solution to Quiz: The de�nite integral of y = 5x4 with respect to x
if the lower limit of the integral is x = �2 and the upper limit x = �1
can be written as Z

�1

�2

5x4dx :

From the basic result
R B
A
axndx =

a

n+ 1
xn+1

����
B

A

we obtain

Z
�1

�2

5x4dx =
5

5
x5
����
�1

�2

= x5
����
�1

�2

= (�1)5 � (�2)5
= �1� (�32)
= �1 + 32 = 31 :

Note that since the integrand 5x4 is positive for all x, the negative
suggested solutions could not be correct. End Quiz
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Solution to Quiz: To calculate the de�nite integral
R 2b

a
x2dx use

the basic inde�nite integralZ
xndx =

1

n+ 1
xn+1 :

with n = 2. This givesZ 2b

a

x2dx =
1

2 + 1
x(2+1)

����
2b

a

=
1

3
x3
����
2b

a

=
1

3
� (2b)3 � 1

3
� (a)3

=
1

3
� (2)3 � b3 � 1

3
� a3

=
1

3
� 8� b3 � 1

3
� a3

=
8

3
b3 � 1

3
a3 :

End Quiz
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Solution to Quiz: To evaluate the de�nite integralZ 3

2

1

x2
dx =

Z 3

2

x�2dx

use
R B
A
xndx =

1

n+ 1
xn+1

����
B

A

with n = �2
Z 3

2

x�2dx =
1

(�2 + 1)
x�2+1

����
3

2

=
1

(�1)x
�1

����
3

2

= (�1)� 1

x

����
3

2

= � 1

x

����
3

2

= �1
3
� (�1

2
)

= �1
3
+

1

2
= �2

6
+

3

6

=
�2 + 3

6
=

1

6
:

End Quiz
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